Primer 04

HIV Drug Resistance Primer

Roy M. Gulick, M.D., M.P.H.

Professor of Medicine
Chief, Division of Infectious Diseases
Weill Cornell Medical College
DISCLOSURES

Financial Relationships with Relevant Commercial Interests

- GlaxoSmithKline - Consultant (HIV / ART)
- Janssen Biotech – Sponsored clinical trials (HIV / ART)
- Pfizer Pharmaceuticals – Sponsored clinical trials (HIV / ART)
- Viiv – Sponsored clinical research (HIV/ART)
HIV Drug Resistance Testing

- About 16% of HIV-infected people in the U.S. are infected with a drug-resistant viral strain.
- Current guidelines recommend an HIV genotype as part of screening **BEFORE** ART is started.
- Following failure of 1st or 2nd regimens, HIV genotype is recommended to use with the history to choose the optimal next regimen. Following failure of 3rd and subsequent regimens, both HIV genotype **AND** HIV phenotype should be sent.
- If there is discordance between genotype and phenotype, use the geno result (more sensitive).
HIV Resistance

Nucleoside Reverse Transcriptase Mutations (NRTI)
Nucleoside Associated Mutations (NAMS)

• **M184V** (or **I**) confers COMPLETE resistance to lamivudine (3TC) and emtricitabine (FTC).
• **M184V** (or **I**) “re-sensitizes” both zidovudine (ZDV) and tenofovir (TDF), partially restoring virologic activity of these drugs.
• 4 or more of the 6 NAMS (at positions 41, 67, 70, 210, 215, 219) confers resistance to all NRTIs.
• **K65R** is selected by tenofovir (TDF) and confers resistance to ALL NRTI except zidovudine (ZDV).
• There are a few rare multi-NRTI mutations: **69SSS** (insertion) and **Q151M**.
HIV Resistance
Non-nucleoside Reverse Transcriptase Mutations (NNRTI)

- **K103N** is the signature mutation for efavirenz (EFV).
- **Y181C** is the signature mutation for nevirapine (NVP).
- Efavirenz and nevirapine have low genetic barriers (require only 1 mutation for resistance) and are COMPLETELY cross-resistant to one another.
- Etravirine and rilpivirine have higher barriers to resistance (require >1 mutation for resistance).
- **K103N** has no effect on etravirine susceptibility.
- Rilpivirine failure is associated with **E138K, K101E**, and/or **Y181C** consequent NNRTI class resistance.
HIV Resistance – Protease inhibitors (PI)

• In general, currently used protease inhibitors require multiple mutations for resistance (i.e. have a high genetic barrier).
 – Exception: I50L confers resistance to atazanavir (ATV).

• Patients experiencing failure on a 2 NRTI + boosted PI regimen most often have NO PI mutations.

• With significant prior protease inhibitor use, a phenotype is preferred to a genotype.
HIV Resistance – Other Drugs

• Enfuvirtide (ENF, T-20) has a low barrier to resistance (only 1 mutation in gp41 required). A history of ENF use with failure is enough to suggest drug resistance (even without a genotype).

• Resistance to maraviroc (MVC, the CCR5 antagonist) is very uncommon. The most common mechanism of virologic failure is selection of pre-existing X4 virus (X4 or D/M on tropism test).

• Raltegravir (RAL) and elvitegravir (EVG) have a low barrier to resistance. Patients failing RAL or EVG most commonly already have 2 or more integrase-associated mutations (N155H [with both], Q148H/R/K [with both], Y143C [with RAL], T66I [with EVG].)
Common Mutations To Memorize

- **M184V/I**
 - 3TC and FTC

- **M41L, D67N, K70R, L210W, T215Y, K219Q**
 - "TAMS"
 - 4 or more thymidine-analog mutations (TAMS) affect all approved nucleosides

- **65R**
 - tenofovir

- **Q151M, F77L, F116Y**
 - multi-NRTI
 - multi-NRTI mutations affect all nucleosides except tenofovir may retain activity against Q151M

- **K103N**
 - EFV (and NVP)
 - retains susceptibility to etravirine

- **Y181C**
 - NVP and other NNRTI

- **E138K, K101E**
 - RIL and other NNRTI

- **I50L**
 - ATV

- **N155H, Q148H/R/K**
 - RAL and EVG

- **Y143C**
 - RAL

- **T66I**
 - EVG